Обеспечивают хранение различных веществ в том числе продуктов обмена

Оглавление [Показать]

Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:
Основы цитологии. Клетка. Выполнила преподаватель «Анатомии и физиологии человека»Ямскова Е.С. Структурно-функциональная организация человеческого телаЧеловек занимает в ряду позвоночных высшее место, относится к типу хордовых, chordata; подтипу позвоночных, vertebrata; классу млекопитающих, mammalia, для которых характерно живорождение и питание новорожденных молоком матери. В классе млекопитающих человек относится к подклассу рождающих, theria, имеющих плаценту и молочные железы; отряду приматов, primates; подотряду обезьян и человекообразных обезьян, anthropoidea; надсемейству человекоподобных, hominoidea; семейству человека, hominide, и виду человек разумный, homo sapiens. В строении тела человека условно можно выделить следующие уровни организации:1)организменный (организм человека как единое целое);2)системоорганный (системы органов);3)органный (органы);4)тканевой (ткани);5)клеточный (клетки);6)субклеточный (клеточные органеллы и корпускулярно-фибриллярно-мембранные структуры). Клетка — это элементарная структурная, Функциональная и генетическая единица всех живых организмов. Она была открыта в 1665 г. Р. Гуком. Форма и размеры клеток варьируют, однако существуют общие принципы их строения. Любая клетка имеет клеточную мембрану — плазмолемму (цитолемму), которая отделяет ее от внеклеточной среды или окружающих клеток. Молекулярную основу плазмолеммы составляют два слоя фосфолипидов со встроенными в них белками, которые выполняют роль белковых каналов или пор. Кроме оболочки (плазмолеммы) каждая клетка состоит из двух основных компонентов — ядра и цитоплазмы.Ядро окружено ядерной оболочкой — кариолеммой (нуклеолеммой). Она отделяет ядро от цитоплазмы, выполняя формообразующую и транспортную функции. Ядро заполнено ядерным соком — кариоплазмой, в состав которой входят белки, необходимые для синтеза нуклеиновых кислот. В ядре осуществляется хранение, передача и реализация генетической информации, регуляция жизнедеятельности клетки.Основной единицей хранения генетической информации служит хроматин, состоящий из комплекса ДНК и соответствующий хромосомам, которые не различимы как индивидуальные структуры в интерфазном ядре. Цитоплазма участвует в процессах метаболизма и поддержания постоянства внутренней среды клетки. Она содержит постоянно присутствующие структуры, специализированные на выполнении определенных функций, которые называют органеллами (органоидами) и временными компонентами — включениями, образованными в результате накопления продуктов метаболизма. Классификация органоидов Органеллы общего назначенияСпециализированные органеллымембранныенемембранные1. Эндоплазматическаясеть2. Комплекс Гольджи3. Лизосомы и пероксисомы4. Вакуоли5. Митохондрии1. Рибосомы 2. Клеточный центр 3. Микротрубочки и микрофиламенты 4. Реснички1. Акросома сперматозоида2. Микроворсинки эпителия тонкой кишки 3. Микротрубочки вкусовых луковиц 4. Мерцательные реснички клеток эпителия дыхательных путей Эндоплазматическая сеть (ЭПС) обеспечивает синтез липидов, углеводов и белков, служит главным депо ионов Са2+, обеспечивает транспорт веществ внутри клетки. Выделяют две разновидности ЭПС: гранулярную (шероховатую) и агранулярную (гладкую).На наружной поверхности мембраны агранулярной сети отсутствуют рибосомы, поэтому она имеет гладкую форму. Пластинчатый комплекс (комплекс Гольджи) синтезирует полисахариды и гликопротеины, обеспечивает химическую доработку секрета и его транспорт за пределы клетки, а также обеспечивает усложнение структуры белка, синтезированного ЭПС. Лизосомы и пероксисомы осуществляют переваривание поглощенных клетками веществ, а также расщепление биогенных макромолекул. Они содержат ферменты, обеспечивающие метаболизм различных веществ, в том числе чужеродных (включая лекарственные), и обезвреживание токсичных продуктов обмена. Вакуоли обеспечивают хранение различных веществ, в том числе продуктов обмена. Митохондрии участвуют в генерации и аккумуляции энергии. Рибосомы синтезируют белки. Клеточный центр принимает участие в. делении клеток.Микротрубочки обеспечивают поддерживающую функцию; микрофиламенты выполняют сократительную функцию, принимают участие в образовании межклеточных контактов. Кроме того, в клетке имеются необязательные элементы — включения, которые подразделяют на трофические — питательные: капли жира, гликоген; секреторные: гормоны, биологически активные вещества; экскреторные — подлежащие удалению: мочевина; пигментные — эндогенные (внутренние) — меланин, и экзогенные — поступившие снаружи: пыль, красители (например, в татуировках). Одно из важных свойств клетки — размножение. Соматические клетки делятся путем митоза, половые — мейоза. В результате митоза клетка получает полный (диплоидный) набор хромосом — 23 пары. В результате мейоза в половых клетках остается половинный (гаплоидный) набор хромосом.Время существования клетки от одного деления до другого или от деления до гибели называют клеточным циклом. Он состоит из нескольких периодов:1-й — фаза деления (М);2-й — пресинтетический период (G1) — период накопления различныхвеществ;3-й — синтетический период (S) — происходит образование питательных веществ, удвоение генетического материала;4-й — постсинтетический (G2) — клетка готовится к делению. МИТОЗМЕЙОЗ Химический состав клетки. В состав клетки входит около 70 химических элементов периодической системы Д. И. Менделеева. В животной клетке около 98 % массы составляют четыре элемента: водород, кислород, углерод и азот, которые относят к макроэлементам. Кроме макроэлементов в клетке присутствуют элементы в десятых и сотых долях процента: натрий, калий, кальций, хлор, фосфор, сера, железо и магний — макро-микроэлементы. Каждый из них выполняет важную функцию в клетке. Задания на дом:Во внеаудиторной тетради зарисовать животную клетку.В глоссарий записать изученные термины.Составить таблицу химических элементов клетки (внеаудиторная тетрадь).

«Биология. Общие закономерности. 9 класс». С.Г. Мамонтова и др. (гдз)

Цитоплазма

Вопрос 1.
Цитоплазма — одна из составных частей клетки. Она представляет собой внеядерную часть протоплазмы клеток живых организмов и является рабочим аппаратом клетки, в котором протекают основные метаболические процессы. В ней находится целый ряд оформленых структур, имеющих закономерные особенности строения и поведения в разные периоды жизнедеятельности клетки. Каждая из этих структур несет определенную функцию. Отсюда возникло сопоставление их с органами целого организма, в связи с чем они получи¬ли название органоиды, или органеллы. Есть органоиды, свойственные всем клеткам, — это митохондрии, клеточный центр, аппарат Гольджи, рибосомы, эндоплазматическая сеть, лизосомы, и есть органоиды, свойственные только определенным типам клеток: миофибриллы, реснички и ряд других. Органоиды — жизненно важные составные части клетки, постоянно присутствующие в ней. В цитоплазме откладываются различные вещества — включения.


Вопрос 2.
Органоидами называют постоянно присутствующие в цитоплазме, специализированные для выполнения определенных функций структуры. По структуре выделяют мембранные и немембранные органоиды клетки.

Мембранные органоиды клетки

1. Эндоплазматическая сеть (эндоплазматический ретикулум, ЭПС) — одномембранные органеллы, общего типа, которые представляют собой каналы плазматической мембраны разной формы и величины. ЭПС бывает гладкая и гранулярная.
Гладкая ЭПС — мембранные мешочки.

Функции:1) транспорт веществ к комплексу Гольджи;

2) депонирующая. В мышечных клетках накапливает Ca2+, необходимый для мышечных сокращений;
3) детоксикационная — в клетках печени участвует в обезвреживании ядовитых веществ;
4) синтезирует углеводы и липиды, которые поступают внутрь мембран;
Гранулярная (ГрЭПС или эргастоплазма) — мембранные мешочки на которых располагаются рибосомы. В клетке располагается вокруг ядра и наружная ядерная оболочка переходит в мембраны ГрЭПС.

Функции:1) делит клетку на отсеки, в которых протекают различные химические процессы;

2) транспортирует вещества к комплексу Гольджи;
3) синтезирует белки, которые поступают внутрь каналов ЭПС, где они приобретают свою вторичную и третичную структуры.
2. Аппарат Гольджи — одномембранная органелла общего типа, которая состоит из цистерн, мелких и крупных вакуолей. Диктиосома — стопка цистерн. Все диктиосомы клетки соединяются между собой.

Функции:1)обезвоживание, накопление и упаковка веществ в мембраны;


2)транспорт веществ из клетки;
3)синтезирует полисахариды и присоединяет их к белкам с образованием гликопротеидов, которые обновляют гликокаликс. Гликопротеин (муцин) является важной частью слизи;
4)образует первичные лизосомы;
5)формирует включения;
6)участвует в обмене веществ в клетке;
7)формирует пероксисомы или микротельца;
8)сборка и «рост» мембран, которые затем окружают продукты секреции;
9)участвует в секреции воска растительных клеток.
В растительных клетках диктиосомы могут располагаться отдельными мембранами.
3. Лизосомы — одномембранные органеллы общего типа. Мембранные пузырьки, содержащие расщепляющие ферменты.
Классификация лизосом:
первичные — лизосомы, которые содержат только активный фермент (напр. кислую фосфатазу);
вторичные — это первичные лизосомы вместе с веществом, которое переваривается (аутофагосомы — расщепляют внутренние части клетки, выполнившие свои функции;
гетерофагосомы — расщепляют вещества и структуры, попавшие в клетку).
Остаточные тельца — вторичная лизосома, содержащая не переваренный материал.

Функции:1)внутриклеточное пищеварение;

2) обеспечивают разрушение ненужных структур в клетке;
3)выделяют ферменты из клетки наружу например, при метаморфозе (у насекомых, амфибий), при замене хряща костной тканью – эти процессы называются физиологическим лизисом;
4) эндогенное питание в условиях голодания;
5) участвуют в детоксикации чужеродных веществ поглощаемых фаго- и пиноцитозом с образованием телолизосом или остаточных телец. Известно более 25 наследственных заболеваний, связанных с патологией лизосом. Цитолизис — разрушение клеток путем полного или частичного их растворения как в нормальных условиях (например, при метаморфозе), так и при проникновении болезнетворных организмов, неполноценном питании, недостатке и избытке кислорода, неправильном применении антибиотиков и при действии токсических веществ (патологический лизис).
4. Митохондрии — органеллы общего типа, имеющие двухмембранное строение. Внешняя мембрана гладкая, внутренняя — образует различной формы выросты — кристы. В матриксе митохондрии (полужидком веществе) между кристами находятся ферменты, рибосомы, ДНК, РНК, которые участвуют в синтезе митохондриальных белков. На внутренней мембране видны грибовидные тела — АТФ-сомы, которые являются ферментами, образующими молекулы АТФ.

Функции:1) синтез АТФ;

2) участвуют в углеводном и азотистом обмене;
а) на наружной мембране и рядом в гиалоплазме идет анаэробное окисление (гликолиз);
б) на внутренней мембране — кристах — идут процессы, связанные с окислительным циклом трикарбоновых кислот и дыхательной цепью переноса электронов, т.е. клеточное дыхание, в результате которого синтезируется АТФ;
3) имеют собственные ДНК, РНК и рибосомы, т.е. сами могут синтезировать белки;
4) синтез некоторых стероидных гормонов.
5. Пластиды – двух мембранные органеллы растительных клеток общего типа, разделяются на три типа:
а) лейкопласты — микроскопические органеллы, имеющие двух мембранное строение. Внутренняя мембрана образует 2-3 выроста. Форма округлая. Бесцветны.
Функции: центр накопления крахмала и других веществ. На свету преобразуются в хлоропласты.
б) хромопласты — микроскопические органеллы, имеющие двумембранное строение. Собственно хромопласты имеют шаровидную форму, а образовавшиеся из хлоропластов принимают форму кристаллов каротиноидов, типичную для данного вида растения. Окраска красная, оранжевая, желтая.
Функции: содержат красный, оранжевый и желтый пигменты (каротиноиды). Много в зрелых плодах томатов и некоторых водорослей; окрашивают венчик цветков.
в) хлоропласты — микроскопические органеллы, имеющие двухмембранное строение. Наружная мембрана гладкая. Внутренняя мембрана образует систему двухслойных пластин — тилакоидов стромы и тилакоидов гран. Тилакоид — уплощенный мешочек. Грана — это стопка тилакоидов. В мембранах тилакоидов гран между слоями молекул белков и липидов сосредоточены пигменты — хлорофилл и каротиноиды. В белково-липидном матриксе находятся собственные рибосомы, ДНК, РНК, зерна крахмала. Форма хлоропластов чечевицеобразная. Окраска зеленая.
Функции: фотосинтезирующие, содержат хлорофилл. На гранах идет световая фаза фотосинтеза, в строме — темновая фаза.
6. Вакуоль — мембранная органелла общего типа. Мешок, образованный одинарной мембраной, который называется тонопластом. В вакуолях содержится клеточный сок — концентрированный раствор различных веществ, таких, как минеральные соли, сахара, пигменты, органические кислоты и ферменты. В зрелых клетках вакуоли обычно бывают большими.

Функции:хранение различных веществ, в том числе и конечных продуктов обмена. От содержимого вакуоли в сильной степени зависят осмотические свойства клетки. Иногда вакуоль выполняет функции лизосом.

Немембранные органоиды клетки

1. Рибосомы — сложные рибонуклеопротеиды (РНП). Общего типа, немембранные органеллы, в состав которых входят белки и р-РНК. Субъединицы образуются в ядрышке. У эукариот рибосомы объединяются в полисомы. Полисома — образование из большого числа рибосом на одной и-РНК (синтезируют один тип белка, но с разной скоростью). В состав большой субъединицы входит 2 молекулы р-РНК (в составе одной молекулы находится 3000 нуклеотидов, в составе другой — 100 — 150 нуклеотидов) и 34-36 молекул белков (12 различных видов). В состав малой субъединицы входит 1 молекула р-РНК (которая имеет 1500 нуклеотидов) и 21-24 молекулы белка (12 различных видов).
При укладке тяжа РНК на субъединицах образуются активные центры:
В малой субъединице:
1) и-РНК — связывающий;
2) удерживающий аминоацил — т-РНК.
В большой субъединице:
1) аминоацильный- центр узнавания кодон-антикодон.
2) пептидный или пептидильный, в котором между аминокислотами образуются пептидные связи.
Между этими двумя центрами находится центр, перекрывающий эти два — пептидилтранферазный, который катализирует образование пептидных связей. Рибосомы эукариотической клетки имеют коэффициент седиментации (скорость осаждения при ультрацентрифугировании или S — коэффициент Сведберга) — 80S (60S — большая субъединица и 40S — малая). Прокариотические клетки, а так же рибосомы митохондрий и пластид имеют — 70S (50S — большая субъединица и 30S — малая).
Функция: биосинтез белка. Свободные полисомы синтезируют белок для самой клетки, а прикрепленные на ЭПС — синтезируют белок на экспорт из клетки.
2. Микротрубочки — полые белковые цилиндры, растут с одного конца за счет присоединения тубулиновых глобул. Немембранные, общего типа органеллы.

Функции:1) входят в состав клеточного центра: комплексом 9+0 (девять групп по одной, две или три, в центре — нет);

2) входят в состав ресничек и жгутиков, комплексом 9+2 (девять по две и в центре две);
3) участвуют в формировании нитей веретена деления;
4) осуществляют внутриклеточный транспорт (например, от ЭПС пузырьки движутся к комплексу Гольджи);
5) формируют цитоскелет.
3. Пероксисомы или микротельца — одномембранные общего типа органеллы.

Функции:1)защитная — нейтрализует перекись, которая является токсическим веществом для клеток;


2) образует депо ряда ферментов (например, каталазы, пероксидазы и др.), которые играют роль при превращении жиров в углеводы и катаболизме пуринов.
4. Микрофиламенты — немембранные общего типа органеллы — тонкие белковые (актиновые, которых выявлено около 10 видов) нити.

Функции:1) образуют пучки для опоры внутриклеточных структур;

2) образуют сократительные системы для клеточной подвижности.
5. Реснички — многочисленные цитоплазматические выросты на поверхности мембраны. Немембранные специальные органеллы.
Функции:
1)удаление частичек пыли (реснитчатый эпителий верхних дыхательных путей);
2)передвижение (одноклеточные организмы).
6. Жгутики — немембранные специальные органеллы, единичные цитоплазматические выросты на поверхности клетки.

Функции:передвижение (сперматозоиды, зооспоры, одноклеточные организмы).

7. Миофибриллы — тонкие нити до 1 см длиной и больше. Немембранные специальные органеллы.
Функции:
служат для сокращения мышечных волокон, вдоль которых они расположены.
8. Клеточный центр — ультрамикроскопическая органелла немембранного строения, общего типа. Состоит из двух центриолей. Каждая имеет цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество. Центриоли расположены перпендикулярно друг к другу. Вокруг центриолей располагается матрикс. Полагают, что в нем есть собственная ДНК (подобная митохондриальной ДНК), РНК и рибосомы.

Функции:1) принимает участие в делении клеток животных и низших растений. В начале деления (в профазе) центриоли расходятся к разным полюсам клетки. От центриолей к центромерам хромосом отходят нити веретена деления. В анафазе эти нити протягивают хроматиды к полюсам. После окончания деления центриоли остаются в дочерних клетках, удваиваются и образуют клеточный центр.

2) является важной частью в цитоскелете клетки.

Вопрос 3.
К самовоспроизводящимся органоидам клетки относятся: митохондрии, пластиды, а также клеточный центр и базальные тельца.
В митохондриях и пластидах имеется кольцевидная молекула ДНК, сходная по строению с хромосомой прокариот. Самовоспроизведение этих структур основано на редупликации ДНК и выражается в делении надвое.
Центриоли способны к самовоспроизведению по принципу самосборки. Самосборка — образование при помощи ферментов структур, подобных существующим.

Вопрос 4.
В цитоплазме клеток находятся непостоянные компоненты – включения, которые могут быть трофические, секреторные и специальные. Трофические или запасающие клеткой вещества, которые необходимы для питания. Например, капли жира, белковые гранулы, гликоген (который накапливается в клетках печени). Секреторные – это как правило различные секреты. Например, секреты молочных, потовых и жировых желез. Специальные – это пигменты. Например, гемоглобин в эритроцитах, липофусцин (пигмент старения), меланин в меланоцитах кожи.

Вопрос 5.
Эндоцитоз и экзоцитоз. Макромолекулы и крупные частицы, которые не транспортируются через плазматическую мембрану, проникают внутрь клетки путем эндоцитоза, а удаляются из нее – экзоцитозом. Различают два типа эндоцитоза – фагоцитоз и пиноцитоз.
Эндоцитоз может осуществляться по разному, но неизменно зависит от плазматической мембраны, служащей «перевозочным средством» для проникновения внутрь клетки. Каким бы ни был захваченный клеткой объект, он всегда входит в нее, окутанный мембранозным мешком, образованным от впячивания (инвагинации) плазматической мембраны.
Фагоцитоз (греч. рhagos – пожирать, cytos – вместилище) – это захват и поглощение клеткой крупных частиц (иногда целых клеток и их частиц). При этом плазматическая мембрана образует выросты, окружает частицы и в виде вакуолей перемещает их внутрь клетки. Этот процесс связан с затратами мембраны и энергии АТФ. Фагоцитоз был впервые описан И.И. Мечниковым при изучении деятельности лейкоцитов и макрофагов, которые защищают организм от патогенных микроорганизмов и других нежелательных частиц. Благодаря фагоцитарной деятельности, организм оказывается невосприимчивым к ряду инфекционных заболеваний. Это явление легло в основу его фагоцитарной теории иммунитета. Путем фагоцитоза осуществляется внутриклеточное пищеварение у простейших и низших беспозвоночных. У высокоорганизованных животных и человека фагоцитоз играет защитную роль (захват лейкоцитами и макрофагами патогенных микроорганизмов).
Пиноцитоз (гр. pino – пить) – поглощение капелек жидкости с растворенными в ней веществами. Осуществляется за счет образования впячиваний на мембране и формирования пузырьков, окруженных мембраной, и перемещения их внутрь. Этот процесс также связан с затратами мембраны и энергии АТФ. Всасывающая функция эпителия кишечника обеспечивается путем пиноцитоза. Если клетка перестает синтезировать АТФ, то процессы пино- и фагоцитоза полностью прекращаются.
Экзоцитоз – выведение веществ из клетки. Путем экзоцитоза выводятся из клетки гормоны, белки, жировые капли, не переваренные частицы. Эти вещества, заключенные в пузырьки, подходят к плазмалемме, обе мембраны сливаются, содержимое пузырька выводится наружу, а мембрана пузырька встраивается в оболочку клетки.


  1. ^ Сортировка белков в аппарате Гольджи.

Через АГ проходит большой поток белков: поток гидролитических ферментов в компартмент лизосом; поток выделяемых белков, которые накапливаются в секреторных вакуолях и выделяются из клетки только при получении специальных сигналов; поток постоянно выделяемых секреторных белков. Разделение белковых потоков происходит в транс-участке АГ. Этот процесс доконца не расшифрован, но известно, что в сортировке принимают участие трансмембранные рецепторы. 1.5.Лизосомы. Представляют собой пузырьки, ограниченные одиночной мембраной с разнородным содержимым внутри. Все лисосомы содержат ферменты гидролазы, что позволяет им участвовать в процессах внутриклеточного переваривания.  4.1.6. Пероксисомы (микротельца).  Строение. Это небольшие вакуоли (0,3 – 1,5 мкм), окруженные одинарной мембраной, отграничивающей гранулярный матрикс, в центре которого располагается сердцевина. В зоне сердцевины располагаются кристаллоподобные структуры, состоящие из регулярно упакованных фибрилл или трубочек. Пероксисомы вероятно образуются из расширенных концов цистерн ЭПР.  Функции. Во фракциях пероксисом обнаруживаются ферменты, связанные с метаболизмом перекиси водорода (основной – каталаза). Так как перекись водорода является токсичным веществом, эти ферменты выполняют важную защитную роль. 4.1.7. Митохондрии.  Строение. Двумембранный органоид эукариотических клеток. Внешняя митохондриальная мембрана отделяет ее от гиалоплазмы. Обычно она имеет ровные контуры, не образует впячиваний или складок. Ее толщина около 7 нм, она не бывает связана ни с какими другими мембранами цитоплазмы и замкнута сама на себе. Внешнюю мембрану от внутренней отделяет межмембранное пространство шириной около 10 – 20 нм. Внутренняя мембрана ограничивает собственно внутреннее содержимое митохондрии, ее матрикс. Внутренняя мембрана образует впячивания внутрь митохондрии (кристы). Матрикс митохондрий содержит рибосомы, кольцевую молекулу ДНК, отложения солей магния и кальция.  Имея в своем составе молекулу ДНК, митохондрии обладают полной системой авторепродукции, т.е. на митохондриальной ДНК синтезируются информационные, транспортные и рибосомальные РНК и рибосомы, осуществляющие синтез митохондриальных белков. ДНК в митохондриях представлена циклическими молекулами, не образующие связь с гистонами, т.е. напоминают бактериальные нуклеоиды. У человека митохондриальная ДНК содержит 16,5 т.п.н., она полностью расшифрована. Все митохондриальные ДНК представлены множественными копиями, собранными в группы (1-50 циклических молекул на клетку). сиНтез митохондриальной ДНК не связан с синтезом ДНК в ядре. Митохондрии могут как делиться, так и сливаться друг с другом. Рибосомы митохондрий отличаются от рибосом цитоплазмы, они более мелкие (50S). ДНК митохондрий кодирует не все белки митохондрий, а только их часть (в основном структурные белки). Большинство митохондриальных белков синтезируется на рибосомах цитоплазмы. Совокупность митохондрий клетки называется хондриомом.  Функции Митохондрии осуществляют синтез АТФ, происходящий в результате процессов окисления органических субстратов и фосфорилирования АДФ.  4.1.8. Пластиды  Строение. Двумембранные органоиды, встречающиеся у фотосинтезирующих эукариотических организмов (высшие растения, низшие водоросли, некоторые одноклеточные организмы). У высших растений найден целый ряд различных пластид (хлоропласт, лейкопласт, амилопласт, хромопласт), представляющих собой ряд взаимных превращений одного вида пластид в другой.  Функции. Хлоропласты – это структуры, в которых происходят фотосинтетические процессы, приводящие в конечном итоге к связыванию углекислоты и синтезу сахаров и к выделению кислорода.. В других пластидах (лейкопласты, амилопласты) происходит отложение крахмала и каратиноидов (хромопласты). 4.1.9. Вакуоли растительных клеток.  Строение. Мембранная структура, представляющая собой мешок, образованный одинарной мембраной. Мембрана вакуоли носит название тонопласта. Полость вакуоли заполнена так называемым клеточным соком представляющим собой водный раствор, в который входят различные неорганические соли, сахара, органические кислоты и их соли и другие низкомолекулярные соединения, а также некоторые высокомолекулярные вещества (например, белки). Функции. Одной из важнейших функций центральной вакуоли является поддержание тургорного давления. Вода поступает в концентрированный клеточный сок путем осмоса через избирательно проницаемый тонопласт. В результате в клетке развивается тургорное давление и цитоплазма прижимается к клеточной стенке. Осмотическое поглощение воды играет важную роль при растяжении клеток во время их роста.  В вакуолях растения могут накапливаться отходы жизнедеятельности и некоторые вторичные продукты его метаболизма (например, кристаллы оксалата кальция).  В вакуолях могут накапливаться пигменты антоцианы и родственные им соединения, которые придают цветкам и плодам красную, желтую, синюю или пурпурную окраску. В вакуолях могут накапливаться запасные вещества, такие как сахара и белки.  В вакуолях растений иногда содержатся гидролитические ферменты. В этом случае, вакуоли действуют как лизосомы.  4.1.10. Клеточная стенка.  Строение. Встречается у прокариотических клеток и клеток растений. Это плотная многослойная структура, расположенная снаружи клеток. Клеточная оболочка является продуктом жизнедеятельности клетки. Клеточная стенка состоит из двух компонентов: аморфного пластичного гелеобразного матрикса с высоким содержанием воды и опорной фибриллярной системы. Часто для придания жесткости, несмачиваемости и др., в состав оболочек входят дополнительные полимерные вещества и соли. Главными компонентами клеточных стенок являются полисахариды. В состав матрикса оболочек входят полисахариды, растворяющиеся в концентрированных щелочах, гемицеллюлозы и пектиновые вещества. Волокнистые компоненты клеточных оболочек состоят обычно из целлюлозы. Во время деления клеток образуется первичная клеточная стенка. Позже в результате утолщения она может превратиться во вторичную клеточную стенку. Клеточные стенки соседних клеток скрепляет срединная пластинка. Некоторые клетки растений претерпевают интенсивную лигнификацию (одревеснение).  Функции Клеточные стенки обеспечивают отдельным клеткам и растению в целом механическую прочность и опору. В некоторых тканях прочность усиливается благодаря интенсивной лигнификации.  Относительная жесткость клеточных стенок обуславливает тургорисцентность клеток, когда в них осмотическим путем поступает вода.  Клеточные стенки придают растительным клеткам определенную форму.  В клеточных стенках есть небольшие поры, сквозь которые проходят цитоплазматические тяжи – плазмодесмы. Плазмодесмы связывают содержимое отдельных клеток в единую систему – симпласт.  По клеточной стенке происходит передвижение воды и минеральных солей. 4.1.11. Рибосомы.  Строение Немембранный органоид клетки. Рибосомы – это сложные рибонуклеопротеидные частицы, в состав которых входят белки и молекулы рРНК примерно в равных соотношениях. Состоят из двух субединиц – большой и малой. Кроме ЭПР и гиалоплазмы обнаруживаются в митохондриях и пластидах (здесь они гораздо мельче). Эукариотические рибосомы имеют коэффициент седиментации 80 ед. Сведберга (80 S), рибосомы прокариот – 70S. Большая субъединица эукариотической рибосомы имеет коэффициент седиментации 60S, малая – 40S (у прокариот – 50S и 30S соответственно).  Функции Рибосомы являются местом синтеза белка в клетке. 4.1.11. Микротрубочки, микрофиламенты. Строение. Микротрубочки располагаются в матриксе цитоплазмы. Это цилиндрические неразветвленные органеллы. Это очень тонкие трубочки диаметром приблизительно 24 нм. Их стенки толщиной около 5 нм. Построены из спирально упакованных глобулярных субъединиц белка тубулина. В длину они могут достигать нескольких микрометров. Растут микротрубочки с одного конца путем добавления тубулиновых субъединиц.  Функции. Микротрубочки входят в состав центриолей, базальных телец, ресничек, жгутиков. Микротрубочки участвуют также в перемещении других клеточных органелл, например пузырьков Гольджи. Кроме того, микротрубочки образуют опорную систему клетки – цитоскелет. Микрофиламентами называются очень тонкие белковые нити диаметром 5 –7 нм. Эти нити состоят из белка актина и образуют цитоскелет, подобно микротрубочкам. Нередко микрофиламенты образуют сплетения или пучки непосредственно под плазматической мембраной. По-видимому, микрофиламенты участвуют также в экзо- и эндоцитозе. В клетке обнаруживаются и нити миозина (их количество значительно меньше). Взаимодействие актина и миозина лежит в основе сокращения мышц.  4.1.12. Клеточный центр.  Строение. Немембранный органоид клетки. Состоит из двух центриолей. Центриоли характерны и обязательны для клеток животных, их нет у высших растений, низших грибов и некоторых простейших. Основу строения центриолей составляют расположенные по окружности девять триплетов микротрубочек, образующие таким образом полый цилиндр. Обычно центриоли располагаются под прямым углом друг к другу. Функции. В делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В неделящихся клетках центриоли часто определяют полярность клеток эпителия и располагаются вблизи аппарата Гольджи. 4.2. Ядро.  Строение. Клеточное ядро, обычно одно на клетку (есть примеры многоядерных клеток), состоит из ядерной оболочки, отделяющей его от цитоплазмы, хроматина, ядрышка, кариоплазмы (или ядерного сока). Эти четыре основных компонента встречаются практически во всех неделящихся клетках эукариотических организмов. Ядро — самая крупная органелла, заключенная в оболочку из двух мембран. Оболочка ядра пронизана порами. Поры не являются просто сквозным отверстием, а представляют собой сложные комплексы мембран и белков. Внешняя ядерная мембрана непосредственно переходит в мембраны ЭПР, от нее могут отделяться вакуоли, переходящие в систему аппарата Гольджи.  Основным компонентом интерфазного ядра является хроматин, в состав которого входит ДНК в комплексе с белком. В делящихся клетках хроматиновые нити спирализуются и образуют хромосомы. Внутри ядра практически всех эукаритических клеток видны одно или несколько округлой формы телец. Это ядрышки. Ядрышко – не самостоятельная структура или органоид. Оно – производное хромосомы, один из ее локусов, активно функционирующий в интерфазе. В состав ядрышка также входят рРНК и белки.  Все ядерные структуры погружены в ядерный сок (кариоплазма, нуклеоплазма). Функции Ядро осуществляет две группы общих функций: одну, связанную собственно с хранением генетической информации, другую — с ее реализацией, с обеспечением синтеза белка. В первую группу входят процессы, связанные с поддержанием наследственной информации в виде неизменной структуры ДНК. Эти процессы связаны с наличием так называемых репарационных ферментов, ликвидирующих спонтанные повреждения молекулы ДНК, что сохраняет строение молекул ДНК практически неизменными в ряду поколений. Кроме того, в ядре происходит воспроизведение или редупликация молекул ДНК, что дает возможность двум клеткам получить совершенно одинаковые в качественном и количественном смысле объемы генетической информации. В ядрах происходят процессы изменения и рекомбинации генетического материала, что наблюдается во время мейоза (кроссинговер). Наконец, ядра непосредственно участвуют в процессах распределения молекул ДНК при делении клеток.  Другой группой клеточных процессов, обеспечивающихся активностью ядра, является создание собственно аппарата белкового синтеза. Это не только синтез, транскрипция на молекулах ДНК разных информационных РНК, но и транскрипция всех видов транспортных и рибосомных РНК. В ядре (ядрышке) также происходит образование субъединиц рибосом, путем сборки синтезированных в ядрышке рибосомных РНК с рибосомными белками, которые синтезируются в цитоплазме и переносятся в ядро. Таким образом, ядро представляет собой не только вместилище генетического материала, но и место, где этот материал функционирует и воспроизводится. 4.3. Включения.  Кроме постоянных в клетке могут находиться временные компоненты цитоплазмы, продукты ее жизнедеятельности. Такие временные компоненты называются включениями. ТАБЛИЦА 2. Строение клетки.

Структура и схематическое изображение

Строение

Функции

  1. Плазматическая мембрана (плазмалемма)

обеспечивают хранение различных веществ в том числе продуктов обмена

Тонкие пласты (6-10 нм), состоящие из бислоя липидов и молекул белка, расположенных на поверхности, погруженных или пронизывающих его.

Избирательно проницаемый барьер, регулирующий обмен между клеткой и средой. Плазмалемма отделяет цитоплазму от внешней среды, регулирует транспорт веществ в клетку и из нее, осуществляет межклеточные взаимодействия, принимат участие в делении клетки. 

II. Органоиды

Специализированные структуры цитоплазмы, которые строением и выполняют жизнедеятельности постоянные компоненты обладают определенным определенные функции в клеток.

II.1. Мембранные органоиды

II.1.1. Ядро обеспечивают хранение различных веществ в том числе продуктов обмена

Самая крупная органелла. Заключена в оболочку из двух мембран, пронизанную порами. Включает в себя хроматин (в интерфазе) или хромосомы (при делении), ядрышко и нуклеоплазму .

Хранение и реализация генетической информации. 

II,1.2. Эндоплазматический ретикулум (ЭПР)

Система уплощенных мембранных мешочков – цистерн, узких каналов. Различают шероховатый (гранулярный) ЭПР, имеющий на мембранах рибосомы и гладкий (агранулярный) не имеющий их в своем составе.

Обеспечивает транспорт веществ как внутри клетки, так и между соседними клетками. Делит клетку на отдельные секции, компартменты, в которых одновременно происходят различные физиологические процессы и химические реакции.Функцией шероховатогоЭПР является синтез, сегрегация и созревание белков, гладкого – метаболизм липидов, стероидов и некоторых внутриклеточных полисахаридов.

II.1.3. Аппарат Гольджи

Стопка уплощенных мембранных мешочков –цистерн. На одном конце стопки мешочки непрерывно образуются, а с другого – отшнуровываются пузырьки. Стопки могут быть собраны в одной зоне (диктиосомы) или образуют пространственную сеть.

Накопление и модификация продуктов (г.о. белков), синтезированных в ЭПР. Транспорт этих веществ в пузырьках и выведение их за пределы клетки. Является источником лизосом.

II.1.4. Лизосомы

Простой сферический мембранный мешочек, заполненный пищеварительными (гидролитическими) ферментами

Расщепление, переваривание каких-либо клеточных структур или молекул; накопление непереваренных остатков; аутофагоцитоз (отбор и уничтожение измененных, дефектных клеточных элементов)

II.1.5. Пероксисомы (микротельца)

Небольшие вакуоли, окруженные одинарной мембраной. Содержимое имеет зернистую структуру, в центре иногда располагается кристаллоподобное образование.

Содержат ферменты метаболизма перекиси водорода (основной – каталаза). 

II.1.6. Митохондрии

Окружены оболочкой из двух мембран. Внутренняя мембрана образует складки (кристы). Содержит матрикс, в котором находятся рибосомы, одна кольцевая молекула ДНК, включения.

Являются «энергетическими станциями» клетки – местом синтеза АТФ. При аэробном дыхании в кристах происходит окислительное фосфорилирование и перенос электронов, а в матриксе работают ферменты, участвующие в цикле Кребса и в окислении жирных кислот.

II.1.7. Пластиды (хлоропласты, хромопласты, лейкопласты, амилопласты)

Двумембранные органоиды, характерные для растительных клеток. Основная пластида – хлоропласт. Это крупная содержащая хлорофилл пластида. Обладает сложной системеой внутренних мембран. Выделяют ламеллы стромы и мембраны тилакоидов. Тилакоиды собраны в стопки — граны. Ламеллы свзывают граны друг с другом. В матриксе обнаруживаются рибосомы и кольцевая ДНК. 

Функцией хлоропластов является фотосинтез. В других пластидах (лейкопласты, амилопласты) откладываются крахмал и каратиноиды (хромопласты).

II.1.8. Вакуоли 

Крупные центральные вакуоли встречаются только у растительных клеток. Более мелкие встречаются как в клетках растений, так и в клетках животных. Представляет собой мешок, образованный одинарной мембраной, которая называется тонопластом. В вакуоли содержится клеточный сок – концентрированный раствор различных веществ, таких как минеральные соли, сахара, пигменты, органические кислоты и ферменты. 

Здесь храняться различные вещества, в том числе и конечные продукты обмена. От содержимого вакуоли в сильной степени зависят осмотические свойства клетки. Иногда вакуоль выполняет функции лизосом.

II.1.9. Клеточная стенка

Плотная многослойная структура, расположенная снаружи клетки. Характерна для клеток растений и прокариот. Является продуктом жизнедеятельности клетки. Состоит из аморфного гелеобразного матрикса с большим содержанием воды, и опорной фибриллярной системы. Главным компонентом клеточной стенки являются полисахариды. В матриксе преобладают гемицеллюлозы и пектиновые вещества, волокнистым компонентом является целлюлоза. Соединяет клетки срединная пластинка, состоящая из пектиновых веществ. Может подвергаться вторичному утолщению и лигнификации.

Обеспечивает механическую опору и защиту, поддерживает форму клетки. Благодаря ей возникает тургорное давление, способствующее усилению опорной функции. По клеточной стенке происходит передвижение воды и минеральных солей. За счет пор и плазмодесм объединяет протопласты соседних клеток в единую непрерывную систему – симпласт (осуществляет транспорт веществ между этими клетками.

II.2. Немембранные органоиды

II.2.1. Рибосомы

Очень мелкие органеллы, состоящие из двух субъединиц – большой и малой. Содержат белок и РНК. Связаны с мембранами ЭПР или свободно лежат в цитоплазме.

Место синтеза белка в клетке.

II.2.2. Микротрубочки, микрофиламенты

Опорные структуры, располагаются в цитоплазме. Микротрубочки представляют собой цилиндрические неразветвленные трубочки, диаметром примерно 24 нм, длиной до нескольких мкм. Построены из спирально упакованных глобул белка тубулина.  Микрофиламенты — тонкие белковые нити диаметром 5-7 нм, состям из белков актина или миозина. 

Микротрубочки формируют цитоскелет, входят в состав центриолей, ресничек, жгутиков, участвуют в перемещении других клеточных органоидов. Микрофиламенты также образуют цитоскелет, участвуют в экзо- и эндоцитозе. Взаимодействие актина и миозина лежит в основе мышечного сокращения.

II.2.3. Клеточный центр

Состоит из двух центриолей. Характерны для животных клеток. Основой строения центриолей являются расположенные по окружности девять триплетов микротрубочек, образующих полый цилиндр. Расположены под прямым углом друг к другу.

Принимают участие в формировании веретена деления, располагаются на его полюсах. 

III. Включения

Временные компоненты  жизнедеятельности

цитоплазмы, продукты клетки

III.1. Трофические

Гликоген и жир в клетках животного организма

Запасные питательные вещества

III.2. Секреторные

Продукты жизнедеятельности железистых клеток (гормоны, ферменты,секреты)

Участвуют в работе внутренних органов (напрмер, ферменты кишечника, в регуляции обмена веществ)

III.3. Экскреторные

Конечные продукты обмена (соли, мочевая кислота).

Предназначены для выведения из организма.

Leave a Reply

Ваш e-mail не будет опубликован. Обязательные поля помечены *